5,644 research outputs found

    Non-equilibrium interfaces in colloidal fluids

    Full text link
    The time-dependent structure, interfacial tension, and evaporation of an oversaturated colloid-rich (liquid) phase in contact with an undersaturated colloid-poor (vapor) phase of a colloidal dispersion is investigated theoretically during the early-stage relaxation, where the interface is relaxing towards a local equilibrium state while the bulk phases are still out of equilibrium. Since systems of this type exhibit a clear separation of colloidal and solvent relaxation time scales with typical times of interfacial tension measurements in between, they can be expected to be suitable for analogous experimental studies, too. The major finding is that, irrespective of how much the bulk phases differ from two-phase coexistence, the interfacial structure and the interfacial tension approach those at two-phase coexistence during the early-stage relaxation process. This is a surprising observation since it implies that the relaxation towards global equilibrium of the interface is not following but preceding that of the bulk phases. Scaling forms for the local chemical potential, the flux, and the dissipation rate exhibit qualitatively different leading order contributions depending on whether an equilibrium or a non-equilibrium system is considered. The degree of non-equilibrium between the bulk phases is found to not influence the qualitative relaxation behavior (i.e., the values of power-law exponents), but to determine the quantitative deviation of the observed quantities from their values at two-phase coexistence. Whereas the underlying dynamics differs between colloidal and molecular fluids, the behavior of quantities such as the interfacial tension approaching the equilibrium values during the early-stage relaxation process, during which non-equilibrium conditions of the bulk phases are not changed, can be expected to occur for both types of systems.Comment: Submitte

    Multivariate sparse interpolation using randomized Kronecker substitutions

    Full text link
    We present new techniques for reducing a multivariate sparse polynomial to a univariate polynomial. The reduction works similarly to the classical and widely-used Kronecker substitution, except that we choose the degrees randomly based on the number of nonzero terms in the multivariate polynomial, that is, its sparsity. The resulting univariate polynomial often has a significantly lower degree than the Kronecker substitution polynomial, at the expense of a small number of term collisions. As an application, we give a new algorithm for multivariate interpolation which uses these new techniques along with any existing univariate interpolation algorithm.Comment: 21 pages, 2 tables, 1 procedure. Accepted to ISSAC 201

    Laboratory studies of atomic oxygen reactions with solids

    Get PDF
    Atomic beam experiments were performed to investigate the rate of atomic oxygen etching of carbon and polyimide films. The main emphasis of these experiments was on gaining an understanding of the role of atomic oxygen translational energy and substrate temperature in promoting the reactions. The experimental facility and techniques are described and results reviewed

    One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative 1/p**2 U(1) Gauge Model

    Full text link
    This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ\theta-deformed non-commutative p2p^{-2} model originally introduced by Gurau et al. arXiv:0802.0791. It is shown that breaking terms of the form used by Vilar et al. arXiv:0902.2956 and ourselves arXiv:0901.1681 to localize the BRST covariant operator (D2θ2D2)1(D^2\theta^2D^2)^{-1} lead to difficulties concerning renormalization. The reason is that this dimensionless operator is invariant with respect to any symmetry of the model, and can be inserted to arbitrary power. In the present article we discuss explicit one-loop calculations, and analyze the mechanism the mentioned problems originate from.Comment: v2: minor corrections and references added; v3: published versio

    Unconventional Tuning Parameters of Low Temperature Transport at Strontium Titanate Interfaces

    Get PDF

    April: A Song Cycle for Low Voice and Chamber Orchestra

    Get PDF
    An original composition in five movements for voice and a chamber orchestra of eleven instruments. The first movement is an overture; the second and fifth movements have text by Sara Teasdale; the third and fourth movements have text by Edna St. Vincent Millay
    corecore